
 Diagnostics with CAPL

2021-02-04

Author(s) Oliver Ernst, Dirk Schwarz
Restrictions

SN-IND-1-040_Diagnostics_with_CAPL_since_9.0_SP3 1

Table of Contents

1 About this Support Note .. 1
2 Overview ... 1
3 Configuring the diagnostic components of CANoe/CANalyzer .. 2

3.1 How to add a diagnostic description in CANoe/CANalyzer.. 2
3.2 Property pages .. 4

3.2.1 Transport layer ... 5
3.2.2 Diagnostic layer ... 6
3.2.3 Additional descriptions ... 7

4 About qualifiers and short names... 8
5 Addressing the ECU .. 9
6 Creating and sending a request ... 10
7 Setting the parameters of a request ... 10
8 Receiving the response and reading the response parameters .. 11
9 Reading the fault memory.. 13
10 Reading extended data records and snapshot data of the fault memory ... 14
11 Security access with Seed & Key DLL ... 17
12 Diagnostics in test modules ... 19
13 Simulating an ECU .. 21
14 Sending functional requests .. 23
15 Manipulating diagnostic data on raw level .. 24
16 Object-oriented programming .. 25
17 Where to find more information .. 27
18 Contact information ... 28

1 About this Support Note

In the table below you will find the icon conventions used throughout the Support Note.

Symbol Utilization

This icon indicates notes and tips that facilitate your work.

This icon gives you step-by-step instructions.

This icon indicates examples.

2 Overview

This Support Note will show you how to access an ECU using the diagnostic features of CANoe and (as far as
possible) of CANalyzer and how to use the diagnostic functions provided by the CAPL programming language.
This Support Note will only cover diagnostics on CAN, but aside from the bus specific aspects, diagnostics on
FlexRay, LIN, K-Line and DoIP is quite similar.

This Support Note is intended for CANoe versions starting from 9.0 SP3 and higher.
There is a separate Support Note for older CANoe versions. To receive it, please contact the Vector
Support (contact information in chapter 18).
All screenshots in this note are taken from CANoe 14.

SN-IND-1-040 Diagnostics with CAPL 2

3 Configuring the diagnostic components of CANoe/CANalyzer

If you want to create diagnostic tests or if you want to access the diagnostic data of an ECU with
CANoe/CANalyzer, you have to add a diagnostic description first.
There are different types of descriptions available:

> CDD (CANdela Diagnostic Description)
CDD files are created in the Vector tool CANdelaStudio.

> ODX (Open Diagnostic Data Exchange)
Since the diagnostic data can be divided into several ODX files, it is usually provided as a single PDX
(packed ODX) file.
A PDX can contain the diagnostic data for more than one ECU.
Therefore, you have to select the ECU in this case.

> MDX (Multiplex Diagnostic Data Exchange)
This is an OEM-specific format.

If none of these concrete descriptions is available, CANoe/CANalyzer offers two alternatives:

> Standard Diagnostic Description
Predefined CDD files delivered with CANoe/CANalyzer which contain only services defined in the ISO
standards. The CDD files cannot be customized.

> Basic Diagnostic Description

This description has to be created by the user inside CANoe/CANalyzer using the Basic Diagnostics
Editor.
They have only limited functionality (e.g. Basic Diagnostic Descriptions do not contain a fault memory
model, session model or security access).

3.1 How to add a diagnostic description in CANoe/CANalyzer

> In the Diagnostics & XCP ribbon, click on Diagnostics/ISO-TP:

The Diagnostics/ISO TP Configuration window will appear.

> Choose the targeted network name and click on the button “Add Diagnostic Description”.
Select one of the above-mentioned diagnostic description types in the appearing drop-down
menu and select the file (except for basic diagnostics where the Basic Diagnostic Editor will
open after closing this dialog box).

SN-IND-1-040 Diagnostics with CAPL 3

After the selection of the diagnostic description, the diagnostic configuration for the chosen
network is available:

The configuration`s branch is named after the ECU qualifier (here Door).
The most important settings are:

> ECU qualifier
The qualifier is a unique identifier for this diagnostic description.

Choose the network name you want to add a diagnostic
description to (in this example “Body-CAN”).

Click on “Add Diagnostic Description”.

SN-IND-1-040 Diagnostics with CAPL 4

It is also used in CAPL to address diagnostic requests (see chapter 5).

> Interface
The interface is a set of communication parameters to access the ECU.
In case the diagnostic description does not contain a valid or suitable set of these
parameters, you can use some default interfaces (prefixed with {generated}) for 11-bit and
29-bit addressing, for normal fixed addressing (for J1939), extended addressing, etc. See
screenshot below:

> Variant
The variant determines which services are available for diagnostics.
If the diagnostic description contains more than one variant, please choose the desired one
here.

> Diagnostics tester
Please determine which type of requests CANoe/CANalyzer as diagnostics tester should
use:

> Physical Requests
The tester will send physical requests in order to access only one ECU on the network.
This is the typical way of diagnostic communication.

> Functional Group Requests
The tester will send functional requests in order to access all ECUs on the network.

3.2 Property pages

The configuration’s branch has three property pages:

> Transport Layer

> Diagnostic Layer

> Additional Descriptions

The most important settings of these three pages are explained below.

SN-IND-1-040 Diagnostics with CAPL 5

3.2.1 Transport layer

The settings on this page depend on the bus type. For CAN it looks like this:

> Override manually
You can decide whether to use the communication parameters of the selected interface or to overwrite
them and use different values.
Depending on the addressing method (physical or functional requests) some or all of these parameters
on this page are editable.

If you have selected one of the default interfaces (prefixed with {generated}), the override manually
setting is automatically checked as you are required to make some settings (like CAN ID).

> Addressing
Here you can set the CAN IDs used for functional or physical requests and responses
when “Override manually” is enabled.
It`s also possible to activate 29-bit identifier via the check box

SN-IND-1-040 Diagnostics with CAPL 6

3.2.2 Diagnostic layer

The settings on this page do also depend on the bus type. For CAN it looks like this:

> Override manually
You can decide whether to use the S3 and P2 timings of the selected interface or to overwrite them and
use different values.

If you have selected one of the default interfaces (prefixed with {generated}) the override manually
setting is automatically checked.

> Send tester present
With this check box you can enable or disable if Tester Present should be sent cyclically to the ECU.
Tester Present is only sent after the measurement has been started and once a diagnostics request
has been sent.

> Security access
Here you can include a Seed & Key DLL which provides the security algorithm for unlocking the ECU.

Two templates for creating such a DLL with Visual Studio (including the project file) can be found in the
following directory:

C:\Users\Public\Documents\Vector\CANoe\Sample Configurations [CANoe-

Version]\CAN\Diagnostics\UDSSystem\SecurityAccess

SN-IND-1-040 Diagnostics with CAPL 7

3.2.3 Additional descriptions

If you want to use a service that is not defined in the added diagnostic description (referred to as
master description) you can use additional descriptions to extent the Master Description. This is
especially useful if the master description cannot or shall not be changed.

This property page is bus independent and therefore always looks like this:

> Add additional description
Like for the master description you can choose between the following description types:

Diagnostic Description (CDD, ODX/PDX, MDX)
Standard Diagnostic Description
Basic Diagnostic Description

It`s also possible to add more than one additional description (as depicted in the screenshot above).

> Additional descriptions table
The table shows the master description (in grey) and the added additional descriptions.
The settings (e.g. ECU Qualifier or Variant) for the additional descriptions can be changed here.

You can drag the lines with the descriptions up or down to set the search order within the descriptions.
The top description is taken first and the description on the bottom is taken last when a service is
searched for.

In CAPL the ECU qualifier for an additional description’s service is written as
<ECU qualifier of „Master“ description>.<ECU qualifier of Additional

Description>

(e.g. Door.BasicDiagnosticsEcu).

Please find more information about qualifiers in the following chapters 4 and 5.

SN-IND-1-040 Diagnostics with CAPL 8

4 About qualifiers and short names

Each diagnostic object is identified by a qualifier.

The qualifier is in contrast to the name language independent (always indicated in English). In CDD files this
qualifier is there often called a shortcut qualifier (especially for services). In PDX files the qualifier is equivalent
to the ODX short name. The ODX long name cannot be used here.

For programming with CAPL, these qualifiers and objects can easily be accessed in the CAPL browser using
the Symbols explorer which can be switched to Diagnostics

Please use the symbols in the toolbar to change the display of the diagnostic elements in the tree view.

Depending on the selection either the Diagnostic Classes or Diagnostic Services will be displayed.

Select Symbols-Tab

ECU qualifier with variant.
The variant can be changed by clicking
on the blue link.

Service qualifier

_RQ = Request

_PR = Positive Response

_NR = Negative Response

Parameter qualifier

SN-IND-1-040 Diagnostics with CAPL 9

The diagnostic classes and services can be displayed either with the name or the qualifier by selecting

.

There are 3 types of diagnostic objects which can be referenced by CAPL:

> ECU

> Services

> Parameters

Each of these objects has its own qualifiers which have to be used in the various diagnostics functions or in
the definition of diagnostics CAPL objects. There is an ECU qualifier that is used to address a specific ECU.
For each ECU, there are several diagnostic classes available, but these classes are only used for obtaining a
better structure, in CAPL they are generally not required.

Each class consists of related services (e.g. class Fault Memory contains Fault Memory Services), each
service has its own service qualifier. Please note that the read and write services for a specific data identifier
have different qualifiers, the basic name of the service appended with a _Read or _Write supplement. Both
parts together constitute the qualifier.

Again for a better structure, the qualifiers for a service are divided into 3 categories, consisting of the
Mnemonic for the underlying service (e. g. RDBI for ReadDataByIdentifier) and an appendix for Positive
Response (_PR), Negative Response (_NR) and Request (_RQ).

Underneath these structuring elements, you will find the parameter qualifiers for the respective service. For
accessing these parameters, these qualifiers are required.

To use these qualifiers, just drag and drop them from the Symbol Explorer into the CAPL browser’s editing
window.

5 Addressing the ECU

As you can access multiple ECUs with CANoe\CANalyzer, you need to address the ECU that is targeted by
the diagnostic CAPL function calls.

This is done by using the ECU qualifier in on diag.. event handlers and DiagRequest/DiagResponse

objects.

The ECU qualifier is specified in the diagnostics configuration (see chapter 3).

DiagRequest object example

diagRequest Door.Serial_Number_Write req;

// When sent, the request will address the Door ECU

Event handler example

on diagResponse Door.Serial_Number_Write

{

 // Triggers when response from Door ECU is received

}

SN-IND-1-040 Diagnostics with CAPL 10

6 Creating and sending a request

First you have to define a diagnostic request object which can be done by dragging the service qualifier from
the Symbol Explorer to the CAPL browser’s editing window.

The data type DiagRequest can be seen as kind of a „struct“ object.
It represents and contains all the parameters of the request. The DiagSendRequest function sends the
request using the DiagRequest object which is passed as function parameter

diagRequest Door.Serial_Number_Read myRequest;

// Create object for the "Serial Number Read" service

diagSendRequest(myRequest);

// Send Request

If you want to send a request which is not specified in the diagnostics description, you can create and send the
complete request (including SID and subfunction) on raw level.

After the declaration of the diagRequest-object it’s necessary to adjust the size of the service using the
the DiagResize function. Please find more information about working on raw level in chapter 15.

Find below a sample for this use case.

byte request[3] = {0x22, 0xF1, 0x8C};
diagRequest Door.* req;

diagResize(req, elCount(request));

diagSetPrimitiveData(req, request, elCount(request));

diagSendRequest(req);

7 Setting the parameters of a request

In many cases a service contains one or more parameters. Before sending a request, you have to set its
parameters. Parameters can be set using the following methods:

> numeric (physical values: direct values or with applying a conversion rule or formula)

> raw (raw values: as transmitted on the bus byte by byte)

> symbolic (for numeric values which are represented by text tables)

Depending on the type and size of a parameter, you have to use a specific SetParameter function:

> for data types with a size of more than 4 bytes (e.g. VIN) or if you want to set the raw value: use
DiagSetParameterRaw

> for data types, up to 4 bytes use DiagSetParameter. The distinction if a parameter is treated as a
symbolic or numeric one is done by observing the parameter type. A char[] parameter type is the indicator
for a symbolic value, a double type is used for numerical parameters.
It is also possible to use DiagSetParameterRaw for raw access.

> for avoiding the use of a non-available numerical value or misspelled symbolic parameter values, you
should check the return code of the DiagSetParameter functions to see if the parameter has been set
successfully before sending a request (which in the fault case could contain the default value or in worst
case garbage).

SN-IND-1-040 Diagnostics with CAPL 11

diagRequest Door.Serial_Number_Write req;

byte serialNumber[13] = {

0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF

};

long ret;

write("------ Setting of a raw parameter ------");

ret = diagSetParameterRaw(

req, "SerialNumber", serialNumber,

elCount(serialNumber)

);

if(ret>=0)

{

 ret = diagSendRequest(req);

 if(ret>=0)

 write("Request has been (partially) sent");

 else

 write("Could not sent request");

}

else

{

 write("Could not set parameter");

}

You can set all the parameters of a request subsequently before finally using the
DiagSendRequest function to send the request.

If the service contains a parameter with an iterative data type (like a list of DTCs), in order to set
the parameter within the iteration it is necessary to use diagSetComplexParameter or
diagSetComplexParameterRaw.

If the service contains a parameter with a variable length, it might be necessary to adjust the size of
the service using the DiagResize function.

8 Receiving the response and reading the response parameters

After sending a request, you have to receive and evaluate the response. For this purpose CANoe/CANalyzer
provides the on diagResponse event handler.

For CANoe test modules there exists a different approach. Please refer to chapter 12.

This event handler is only called when the request has been sent from CAPL.
Requests sent by Diagnostic Console will not trigger this event handler.

You can read the parameters of the received response using the DiagGetParameter and
DiagGetParameterRaw functions. Like their DiagSet counterparts from chapter 7, the use depends on the
size and type of the parameters.

You can check whether the received response is a positive or a negative response by using
DiagIsPositiveResponse or DiagIsNegativeResponse.

SN-IND-1-040 Diagnostics with CAPL 12

Parameters can be read by using the following methods:

> numeric (physical values: direct values or with applying a conversion rule or formula)

> raw (raw values: as transmitted on the bus byte by byte)

> symbolic (for numeric values which are represented by text tables)

Depending on the type and size of a parameter, you have to use a specific GetParameter function:

> for data types with a size of more than 4 bytes (e.g. VIN) or if you want to read the raw value: use
DiagGetParameterRaw

> for data types up to 4 bytes: use DiagGetParameter. The distinction if a parameter is treated as a
symbolic or numeric one is done by observing the parameter type: a char [] parameter type is the
indicator for a symbolic value, a double type is used for numerical parameters.
It is also possible to use DiagGetParameterRaw for raw access.

There are different types of responses possible:

> no additional parameters (except service ID and data identifier or subfunction)

> additional parameters which can be read as described above

> a negative response code (NRC) in case of a negative response.
The NRC can be read using diagGetResponseCode or diagGetLastResponseCode.

on diagResponse Door.Serial_Number_Read

{

 long ret;

 byte serialNumber[13];

 write("------ Reading of a raw parameter ------");

 if(diagIsPositiveResponse(this))

 {

 ret = diagGetParameterRaw(this,

 "SerialNumber",

 serialNumber, elCount(serialNumber));

 if(ret>=0)

 write("Serial number is (hex): %02X %02X %02X etc.",

 serialNumber[0], serialNumber[1], serialNumber[2]);

 else

 write("Could not retrieve parameter");

 }

 else

 {

 write("Negative response code: 0x%02X",

 diagGetResponseCode(this));

 }

}

If the response contains a parameter with an iterative data type (like a list of DTCs), in order to
read the parameter`s value within the iteration it is necessary to use diagGetComplexParameter
or diagGetComplexParameterRaw.
Please see chapter 9 for more information.

SN-IND-1-040 Diagnostics with CAPL 13

9 Reading the fault memory

The fault memory returns a list of DTCs and the associated status bits. Reading this list (which normally
contains iterations) requires the use of the DiagGetComplexParameter (for data types up to 4 bytes) or
DiagGetComplexParameterRaw (for data types with a size of more than 4 bytes) function. It is essential to
pick the correct qualifiers of both the list itself and the subelements, i.e. the DTC and the status byte. By
reading the DTC symbolically you can obtain the DTC text.

To read all DTCs, you have to get the number of parameter (DTC) iterations by using the function
diagGetIterationCount (available since CANoe 9.0 SP3) first.

For reading DTC by status mask:

on key '7'

{

 diagRequest Door.FaultMemory_ReadAllIdentified req;

 diagSetParameter(req, "DtcStatusMask", 0x09); // Set the status mask

 diagSendRequest(req);

}

on diagResponse Door.FaultMemory_ReadAllIdentified

{

 long length;

 byte StatusByte;

 byte bit;

 char text[200];

 int i;

 dword DTC;

 if(0 != diagIsPositiveResponse(this))

 {

 length = diagGetIterationCount(this, "ListOfDTC"); // Get then number of iterations

 if(length >= 0)

 {

 write(" ");

 write("Read All identified DTCs:");

 write("-------------------------");

 StatusByte = diagGetParameter(this, "DtcAvailabilityMask");

 write("Status Availability Mask: 0x%02X", StatusByte);

 // Get the symbolic and numeric value of one status availability mask bit

 bit = diagGetParameter(this, "DtcAvailabilityMask.TestFailed");

 diagGetParameter(this, "DtcAvailabilityMask.TestFailed", text, elCount(text));

 write("Test failed bit: %s - 0x%02X", text, bit);

 write("-------------------------");

 for(i=0;i<length;i++)

 {

 // Get the symbolic and numeric value of the DTC

 DTC = diagGetComplexParameter(this,"ListOfDTC", i, "DTC");

 diagGetComplexParameter(this, "ListOfDTC", i, "DTC", text, elCount(text));

 // Get the DTC status byte as numerical value

 StatusByte = diagGetComplexParameter(this,"ListOfDTC", i, "StatusOfDtc");

 write("DTC 0x%06X - %s",DTC,text);

 write("StatusByte: 0x%02X",StatusByte);

 // Get the symbolic and numeric value of one status byte bit

 bit =

 diagGetComplexParameter(this,"ListOfDTC", i,"StatusOfDtc.TestFailed");

 diagGetComplexParameter

 (this, "ListOfDTC", i, "StatusOfDtc.TestFailed", text, elCount(text));

 write("Test failed: %s - 0x%02X",text,bit);

 write("-------------------------");

 }

 }

 else

 {

 write("Error retrieving iteration length: %d", length);

 }

SN-IND-1-040 Diagnostics with CAPL 14

 }

 else

 {

 diagGetParameter(this, "RC", text,

 elCount(text)); // get the symbolic value of the response code

 write("Negative response received.\nNegative response code: 0x%02X - %s",

 (byte)DiagGetResponseCode(this), text);

 }

}

10 Reading extended data records and snapshot data of the fault
memory

Extended data records and snapshot data records can be different for each DTC, and there can be one or
more different record types for both data structures. The assignment of the record numbers or types is done
using multiplexor components which determine the data structure actually used.

Generally, the extended data record number or the snapshot number is the multiplexor which determines the
contents of the associated extended data record or the snapshot record. For reading such data, you have to
observe the record number and then read the corresponding parameters for each record type. If you want to
write such data structures (for ECU simulation), you have to set the multiplexor parameter first (which will
adapt the data structure immediately) and then the parameters of the records. Extended data records or
snapshot records can also be implemented as lists (iterations) of such records, similar to DTC lists. In this
case the complex parameter CAPL functions have to be used (please see chapter 9).

The example below for these data structures is not universal, there are different ways to model and implement
such data structures in diagnostic description files. Especially for extended data records, it is not typical as it
does only provide access to one specific extended data record, not to all at once.

Note: The parameter qualifiers in the following examples depend on the diagnostic description which is used,
therefore you most likely need to adapt them to your requirements.

For reading extended data records:

on key '8'

{

 diagRequest Door.FaultMemory_Read_extended_data req;

 dword DTC = 0x402011;

 byte extendedDataRecNumber = 0x0A;

 write("Reading extended data records:");

 write("------------------------------");

 diagSetParameter(req, "DTC", DTC); // Set the specific DTC

 // Read extended data record "Occurrence Counter"

 diagSetParameter(req,

 "ExtendedDataRecordNumber_BaseVariant_Data_Object_Default",

 extendedDataRecNumber);

 diagSendRequest(req);

}

SN-IND-1-040 Diagnostics with CAPL 15

on diagResponse Door.FaultMemory_Read_extended_data

{

 dword DTC;

 byte statusByte;

 long iCount;

 int i;

 byte recNo;

 int ocCounter;

 int agCounterDTC;

 char buffer[100];

 if(diagIsPositiveResponse(this))

 {

 DTC = diagGetParameter(this, "DTC"); // Get the DTC

 statusByte = diagGetParameter(this, "Status_Of_Dtc"); // Get the status byte

 write("DTC: %X", DTC);

 write("StatusByte: %X", statusByte);

 // Get the number of extended data record iterations

 iCount = diagGetIterationCount(this, "ListOfDTCExtendedDataRecord");

 for(i=0;i<iCount;i++) // iterate through all data records

 {

 // Get the data record number (multiplexor) as numeric and symbolic value

 recNo = diagGetComplexParameter(this, "ListOfDTCExtendedDataRecord", i,

 "ExtendedDataRecordNumber_Data_Object_PR");

 diagGetComplexParameter(this, "ListOfDTCExtendedDataRecord", i,

 "ExtendedDataRecordNumber_Data_Object_PR", buffer, elCount(buffer));

 write("Extended Data Record: 0x%02X (%s)", recNo, buffer);

 if(recNo == 0x0A) // Extended data record 0x0A

 {

 ocCounter = diagGetComplexParameter(this, "ListOfDTCExtendedDataRecord",

 i, "Driving_Cycles_Since_Test_Failed");

 write("OccurenceCounter: %d", ocCounter);

 }

 if(recNo == 0x0B) // Extended data record 0x0B

 {

 agCounterDTC = diagGetComplexParameter(this, "ListOfDTCExtendedDataRecord",

 i, "Driving_Cycles_Since_Last_Failed");

 write("DTC Aging Counter: %d", agCounterDTC);

 }

 }

 }

 else

 {

 // get the symbolic value of the response code

 diagGetParameter(this, "RC", buffer, elCount(buffer));

 write("Negative response received.\nNegative response code: 0x%02X - %s",

 (byte)DiagGetResponseCode(this), buffer);

 }

}

For reading snapshot data records:
on key '4'

{

 diagRequest Door.FaultMemory_ReadEnvironmentData req;

 dword DTC = 0x402011;

 byte snapshotNumber = 0x10;

 write("Reading snapshot records:");

 write("------------------------------");

 diagSetParameter(req, "DTC", DTC); // Set the DTC

 // Read snapshot record "First Occurrence"

 diagSetParameter(req,

 "DtcSnapshotRecordNumber_BaseVariant_Data_Object",

 snapshotNumber); // Set the snapshot record number

 diagSendRequest(req);

}

SN-IND-1-040 Diagnostics with CAPL 16

on diagResponse Door.FaultMemory_ReadEnvironmentData

{

 dword DTC;

 byte statusByte;

 byte recNo;

 byte NoIDs;

 byte snapshotRecord[21];

 float wheelSpeedFR;

 float valveVoltageFR;

 int iCount, index;

 char buffer[100];

 if(diagIsPositiveResponse(this))

 {

 DTC=DiagGetParameter(this,"DTC"); // get DTC

 statusByte=DiagGetParameter(this, "StatusOfDTC"); // get status byte

 write("DTC %06X",DTC);

 write("StatusByte: %02X",statusByte);

 iCount = diagGetIterationCount(this,

 "ListOfDTCSnapshotRecord"); // Get the number of iterations

 for(index=0;index<iCount;index++) // iterate through all data records

 {

 // Get the data record number (multiplexor) as numeric and symbolic value

 recNo=DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",index,

 "DtcSnapshotRecordNumber_BaseVariant_Data_Object");

 DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",index,

 "DtcSnapshotRecordNumber_BaseVariant_Data_Object",

 buffer, elCount(buffer));

 write("Snapshot Data Record: 0x%02X (%s)", recNo, buffer);

 if(recNo == 0x10) // Snapshot data record 0x10

 {

 // get the number of identifiers

 NoIDs=DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",index,

 "DtcSnapshotRecordNumberOfIdentifiers");

 // get the data of this snapshot record

 wheelSpeedFR=DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",index,

 "Wheel_Speed_FR");

 valveVoltageFR=DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",index,

 "Valve_Status_FR");

 write("NumberOfIDs: %d",NoIDs);

 write("DID 0x%04X - Wheel Speed FR: %.1f",

 (word)DiagGetComplexParameter(this, "ListOfDTCSnapshotRecord",

 index,"Wheel_Speed"), // display the DID-number in the write window

 wheelSpeedFR);

 write("DID 0x%04X - Valve Voltage FR: %.1f",

 (word)DiagGetComplexParameter(this,"ListOfDTCSnapshotRecord",

 index,"Brake_Pedal"), // display the DID-number in the write window

 valveVoltageFR);

 write("---------------------------------------");

 }

 }

 }

 else

 {

 diagGetParameter(this, "RC",

 buffer, elCount(buffer)); // get the symbolic value of the response code

 write("Negative response received.\nNegative response code: 0x%02X - %s",

 (byte)DiagGetResponseCode(this), buffer);

 }

 }

SN-IND-1-040 Diagnostics with CAPL 17

11 Security access with Seed & Key DLL

The seed & key procedure can be handled using the DiagGetParameter/DiagSetParameter functions and
the DiagGenerateKeyFromSeed or DiagStartGenerateKeyFromSeed function which will execute the secret
key calculation algorithm hidden and implemented in the seed & key DLL. For seeds and keys with more than
4 bytes it is necessary to use the DiagGetParameterRaw/DiagSetParameterRaw functions as shown in the
example.

DiagGenerateKeyFromSeed or DiagStartGenerateKeyFromSeed requires the security level (that is the
subfunction of the 27 UDS service; for example 27 03/04 is used for the level 3).
If the ipOption parameter is not used, it should be an empty string.

Which function to use depends on the length of the key computation. If the computation is guaranteed to take
significantly less than 1 ms, DiagGenerateKeyFromSeed may be used. Otherwise
DiagStartGenerateKeyFromSeed in combination with the callback _Diag_GenerateKeyResult should be
used.

For CANoe test modules there are different functions (e.g. TestWaitForGenerateKeyFromSeed or
TestWaitForUnlockEcu) available.
For a general introduction of diagnostics in test modules please look into chapter 12.

Templates for the seed & key DLL (Visual Studio, C++) can be found in the directory:

C:\Users\Public\Documents\Vector\CANoe\Sample Configurations [CANoe-

Version]\CAN\Diagnostics\UDSSystem\SecurityAccess

The templates are only supplied with CANoe. The path slightly differs for older CANoe versions.

Please add the compiled seed & key DLL to the CANoe/CANalyzer Diagnostic Configuration as explained in
chapter 3

For Security Level 1:
on key 'k'

{

 diagRequest Door.SeedLevel1_Request req;

 long ret;

 write("------ Security access level 1 ------");

 ret=DiagSendRequest(req); // send seed request

 if(ret>=0)

 write("Request seed level 1 has been (partially) sent");

 else

 write("Error while sending request. Error code: %ld", ret);

}

on diagResponse Door.SeedLevel1_Request

{

 byte seedArray[4];

 long ret;

 char buffer[100];

 if(diagIsPositiveResponse(this))

 {

 ret=DiagGetParameterRaw(this,"SecuritySeed",seedArray, elcount(seedArray));

 if(ret>=0)

 {

 write("Seed is (hex) %X %X %X %X",

 seedArray[0],seedArray[1],seedArray[2],seedArray[3]);

 // calculate the key using the received seed: security level 1, variant

"Common"

 ret=DiagStartGenerateKeyFromSeed("Door",seedArray,

 elcount(seedArray),1,"Common","");

 if(ret==0) // Key computation was started

 {

 write("Key computation for security level 1 was started");

SN-IND-1-040 Diagnostics with CAPL 18

 }

 else // errors occured while calculating the key

 {

 write("Error code %ld during key calculation",ret);

 if(ret==-84)

 write("invalid security level");

 if(ret==-86)

 write("buffer too small");

 }

 }

 else

 {

 write("Could not retrieve parameter");

 }

 }

 else

 {

 diagGetParameter(this, "RC", buffer,

 elCount(buffer)); // get the symbolic value of the response code

 write("Negative response received.\nNegative response code: 0x%02X - %s",

 (byte)DiagGetResponseCode(this), buffer);

 }

}

// Callback for "diagStartGenerateKeyFromSeed"

_Diag_GenerateKeyResult(long result, BYTE computedKey[])

{

 diagRequest Door.KeyLevel1_Send reqKey;

 int i;

 long ret;

 char keyBuffer[4], stringBuffer[100];

 if(result==0) // if key has been calculated

 {

 // To output the key in one line, a composite string has to be build

 snprintf(stringBuffer, elCount(stringBuffer),""); // Clear the string buffer

 strncat(stringBuffer, "Key is (hex): ",

 elCount(stringBuffer)); // Begin to build composite string

 for(i=0;i<elCount(computedKey);i++)

 {

 snprintf(keyBuffer, elCount(keyBuffer), "%02X ",

 computedKey[i]); // Print current key byte into key buffer

 strncat(stringBuffer, keyBuffer,

 elCount(stringBuffer)); // Add current key byte to the string buffer

 }

 write(stringBuffer); // Output the string buffer (the key) in one line

 ret=DiagSetParameterRaw(reqKey,"SecurityKey",

 computedKey,elcount(computedKey)); // put the key into the send key service

 if(ret>=0)

 DiagSendRequest(reqKey); // send the key

 else

 write("Could not set key-parameter");

 }

 else // errors occured while calculating the key

 {

 write("Error code %ld during key calculation",result);

 if(result==-84)

 write("invalid security level");

 if(result==-86)

 write("buffer too small");

 }

}

SN-IND-1-040 Diagnostics with CAPL 19

Simple Seed & Key DLL source code:

KEYGENALGO_API VKeyGenResultEx GenerateKeyEx(

 const unsigned char* iSeedArray, /* Array for the seed [in] */

 unsigned int iSeedArraySize, /* Length of the array for the seed

 [in] */

 const unsigned int iSecurityLevel, /* Security level [in] */

 const char* iVariant, /* Name of the active variant [in]*/

 unsigned char* ioKeyArray, /* Array for the key [in, out] */

 unsigned int iKeyArraySize, /* Maximum length of the array

 for the key [in] */

 unsigned int& oSize /* Length of the key [out] */

)

{

 // check the input parameters

 if (iKeyArraySize<2) // check if return buffer is sufficiently large

 return KGRE_BufferToSmall;

 if (iSeedArraySize!=2) // check if seed is 2 bytes, this algorithm works

 // with 2 bytes seed and 2 bytes key only

 return KGRE_UnspecifiedError;

 switch(iSecurityLevel)

 {

 case 1: // algorithm for security level 1: swap the 2 seed bytes

 ioKeyArray[0]=iSeedArray[1];

 ioKeyArray[1]=iSeedArray[0];

 oSize=2;

 break;

 case 3: // algorithm for security level 3: invert the seed bytes

 for(unsigned int i=0;i<iSeedArraySize;i++)

 ioKeyArray[i]=~iSeedArray[i];

 oSize=2;

 break;

 default: // any other level is not handled by this DLL

 return KGRE_SecurityLevelInvalid;

 break;

 }

 return KGRE_Ok;

}

12 Diagnostics in test modules

Creating diagnostic tests with „normal“ CAPL nodes can lead to code of which the control flow is jumping from
one event handler to the other and is not quite easy to understand and follow. For this reason, CANoe’s Test
Feature Set (TFS) offers the possibility of creating sequences of tests by providing TestWaitFor functions
which are not available in normal CAPL nodes because of the real time architecture of CANoe.

For diagnostic tests with its request-response pairing, these test sequences are very suitable elements. After
sending a request, you should make sure the request has been actually sent using the function
TestWaitForDiagRequestSent. Afterwards you wait for the response using the TestWaitForDiagResponse
function, the received parameters of the response can be obtained with the diagGetRespParameter function.
The TFS offers the test report features that provide HTML reports of the tests. Diagnostic objects can be
written into this test report using the TestReportWriteDiagObject function. There is also a
TestReportWriteDiagResponse function.

It is important to evaluate the response of the TestWaitForDiagResponse function, as it could hint to either
the timeout specified in this function or the diagnostic P2 or P2 extended timeout. See KnowledgeBase article:
Handling of TestWaitFor DiagResponse Function.

https://support.vector.com/kb/?id=kb_article_view&sysparm_article=KB0011548
https://support.vector.com/kb/?id=kb_article_view&sysparm_article=KB0011548

SN-IND-1-040 Diagnostics with CAPL 20

void MainTest ()

{

 TestCase1_ReadSpeedFR();

}

testcase TestCase1_ReadSpeedFR()

{

 DiagRequest Door.Wheel_Speed_Read req;

 long ret,ret2,ret3;

 char buffer[100];

 float wheelSpeedFR;

 // Write the current teststep to the testreport

 teststep(0, "1.0", "Read RPM of wheel FR");

 // Get the name of the diagnostic object

 diagGetObjectName(req, buffer, elCount(buffer));

 diagSendRequest(req);

 // Wait until the request has been completely sent

 ret = TestWaitForDiagRequestSent(req, 5000);

 if(ret==1) // Request sent

 {

 TestReportWriteDiagObject(req); // Write the request-Object to the testreport

 write("Request has been successfully sent");

 // Wait for a response, here for 5000ms. Note: This is no P2 timeout!

 ret2=TestWaitForDiagResponse(req,5000);

 if(ret2==1) // Response received

 {

 ret3=DiagGetLastResponseCode(req); // Get the code of the response

 if(ret3==-1) // Is it a positive response?

 {

 // get the response`s parameter in physical format

 wheelSpeedFR=DiagGetRespParameter(req, 1, "Wheel_Speed_FR");

 write("Speed of wheel FR is %.0f RPM",wheelSpeedFR);

 TestReportWriteDiagResponse(req); //Write the response object to the testreport

 // teststep accomplished

 testStepPass(0, "1.0", "Speed of wheel FR is %.0f RPM", wheelSpeedFR);

 }

 else // It is a negative response

 {

 write("Negative Response, NRC: 0x%02X",(byte)ret3);

 TestReportWriteDiagResponse(req); //Write the response object to the testreport

 // teststep failed

 testStepFail(0, "1.0", "Negative Response, NRC: 0x%02X",(byte)ret3);

 }

 if(ret2==0) // timeout. no response received

 {

 write("Timeout specified in TestWaitForDiagResponse expired");

 testStepFail(0, "1.0", "Timeout specified in TestWaitForDiagResponse expired");

 }

 if(ret2<0) // error e.g. transport protocol level

 {

 if(ret2==-92) // This is the error code for P2 or P2* timeouts

 {

 write("TP level error %d, probably P2 or P2* timeout", ret2);

 testStepFail(0, "1.0", "TP level error %d, probably P2 or P2* timeout", ret2);

 }

 else

 {

 write("Error %d in the diagnostic or transport layer", ret2);

 testStepFail(0, "1.0", "Error %d in the diagnostic or transport layer", ret2);

 }

 }

 }

 else

 {

 if(ret==0)

 {

 write("Timeout expired while trying to send request %s", buffer);

 testStepFail(0, "1.0", "Timeout expired while trying to send request %s", buffer);

 }

SN-IND-1-040 Diagnostics with CAPL 21

 if(ret<0)

 {

 write("Internal error %d occured while trying to send request %s", ret, buffer);

 testStepFail(0, "1.0",

 "Internal error %d occured while trying to send request %s", ret, buffer);

 }

 }

}

13 Simulating an ECU

Since CANoe 10.0 the simulation of an ECU has been simplified. It is no longer necessary to add the CAPL
Callback Interface (CCI) as well as the OSEK_TP.DLL to the simulation node.

However, if your configuration needs to run on older CANoe versions or you need to execute tests including
fault injection on TP level or you need to deal with more complex ECU simulations, using the CCI and the
OSEK_TP.DLL is still necessary.

Please find more information about the CCI in the Application Note “AN-IND-1-
012_CAPL_Callback_Interface”, which is provided in the Doc-folder of your CANoe installation

Please find below step-by-step instructions how to setup ECU simulation:

> Open CANoe and add a CAPL node in the Simulation Setup.

> Add the diagnostic description for the ECU to be simulated under Configuration |
Diagnostics/ISO-TP configuration.

> Activate the check box Simulation by and select the previously created CAPL node.

SN-IND-1-040 Diagnostics with CAPL 22

 > Right-click on the node in the Simulation Setup and select Configuration.

> Assign a CAPL-File (*.can) to this node under Node specification

> Edit the CAPL code:

> In the on diagRequest section you have to create the event handlers for the diagnostic
requests sent to this simulated ECU. You can use all of the CAPL DiagGetParameter and
DiagSetParameter functions to read the request's parameters and to set the parameters
for the response. Use DiagSendResponse to send your response.

Please find below a chart which shows the steps outlined above in a more compact way.
Please note: For LIN and FlexRay ECUs, adding a database (*.ldf, *.fibex) is mandatory.

SN-IND-1-040 Diagnostics with CAPL 23

To give you an idea how the CAPL code of an ECU simulation might look like, please note the
following code sample. The simulated ECU does only respond to service Serial Number Read
with some data and sends a simple positive response otherwise.

on diagRequest *

{

 diagResponse this resp;

 diagSendPositiveResponse(resp);

}

on diagRequest Door.Serial_Number_Read

{

 diagResponse Door.Serial_Number_Read resp;

 byte serialNumber[13] = {

 0xFF,0xFF,0xFF,0xFF,0xFF,

 0xFF,0xFF,0xFF,0xFF,0xFF,

 0xFF,0xFF,0xFF

 };

 long ret;

 ret = diagSetParameterRaw(resp,

 "Serial_Number", serialNumber, elCount(serialNumber));

 if(ret >= 0)

 diagSendResponse(resp);

}

14 Sending functional requests

If there is functional addressing defined in the diagnostic description, you can send a request to more than one
ECU.

Please open the diagnostic configuration and select under Usage of the diagnostics description the entry
Functional Group Requests.

SN-IND-1-040 Diagnostics with CAPL 24

From now on, each diagnostic request will be sent using the functional Request ID.
To be able to receive and analyze the response please add another diagnostic description which contains the
same functional Request ID. The Diagnostics tester of the second description has to be set to
Physical Requests.

When waiting for the response, keep in mind that there will probably be more than one response,
so you have to keep waiting for a response after the reception of a response as long as a P2
timeout has not occurred (because after reception of a response, the P2 timer is reset).

15 Manipulating diagnostic data on raw level

If the services defined in the diagnostic description file do not fit your purposes or for creating and checking
faults in tests you can access a service on the raw byte level, the so-called primitive level. Here you have a
stream of bytes. CANoe offers the functions DiagSetPrimitiveData and DiagSetPrimitiveByte to set the
complete service or just a single byte, and the functions DiagGetPrimitiveData and DiagGetPrimitiveByte to
read the whole primitive or a single byte of the services.

diagrequest Door.* req;

diagrequest Door.* req2;

byte rawData[2]={0x10,0x99};

diagResize(req, elCount(rawData));

DiagSetPrimitiveData(req,rawData,elcount(rawData));

DiagSendRequest(req);

// is equivalent to:

diagResize(req2, 2);

DiagSetPrimitiveByte(req2,0,0x10);

DiagSetPrimitiveByte(req2,1,0x99);

DiagSendRequest(req2);

SN-IND-1-040 Diagnostics with CAPL 25

You could change a byte (e.g. a subfunction or a data identifier) to a value that does not exist and check how
the ECU responds to this request. The size of a request or response can be calculated by the
DiagGetPrimitiveSize function.
As a service might have been changed in a way that CANoe does not recognize the response (as it is not
defined in this way in the diagnostic description), you have to use the on diagResponse * event handler to
receive the response (or the request using on diagRequest * in an ECU simulation). This handler will only be
triggered if no other on diagResponse event handler is fitting to the response.

on diagResponse Door.*

{

 byte rawData[4095];

 if((DiagGetPrimitiveByte(this,0)==0x50)

 &&(DiagGetPrimitiveByte(this,1)==0x99))

 {

 write("This is the response to not-defined service 0x10 0x99");

 DiagGetPrimitiveData(this,rawData,elcount(rawData));

 write("%d Bytes received",DiagGetPrimitiveSize(this));

 }

}

In general, we advise to use Additional Diagnostic Descriptions in combination with Basic
Diagnostics (see chapter 3) for services not defined in the description, so the main area of
application of these functions will be fault injection.

However, for complex services the Diag…Primitive functions might be better suitable than Basic
Diagnostics.

16 Object-oriented programming

In CAPL the datatypes diagRequest and diagResponse can also be used like classes
in object-oriented programming languages such as C++.
This means that all diagnostics functions (methods) belonging to the diagRequest- or diagResponse-class
can be called like methods on objects.

The available methods of both classes are listed in CANoe\CANalyzer`s Help.

HTML5 Help (available since CANoe\CANalyzer 14.0):

SN-IND-1-040 Diagnostics with CAPL 26

CHM Help:

Please find the CAPL sample from chapter 7 adapted to object-oriented programming below.

diagRequest Door.Serial_Number_Write req;

byte serialNumber[13] = {

0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF,0xFF,0xFF,

0xFF,0xFF,0xFF

};

long ret;

write("------ Setting of a raw parameter ------");

ret = req.SetParameterRaw("SerialNumber", serialNumber,

elCount(serialNumber)

);

if(ret>=0)

{

 ret = req.SendRequest();

 if(ret>=0)

 write("Request has been (partially) sent");

 else

 write("Could not sent request");

 }

 else

 {

 write("Could not set parameter");

 }

SN-IND-1-040 Diagnostics with CAPL 27

17 Where to find more information

Please find an explanation of all Diagnostics CAPL Functions in the CANoe\CANalyzer`s Help.
HTML5 Help (available since CANoe\CANalyzer 14.0):

CHM Help:

Several Diagnostics CAPL samples are available in the KnowledgeBase.

Detailed information about CANoe\CANalyzer`s diagnostic features can be found in the
following Application Notes:

• AN-IND-1-001_CANoe_CANalyzer_as_Diagnostic_Tools

• AN-IND-1-004_Diagnostics_via_Gateway_in_CANoe

• AN-IND-1-012_CAPL_Callback_Interface

The Application Notes are provided in the Doc-folder of your CANoe\CANalyzer installation.

https://support.vector.com/kb?id=kb_search&spa=1&u_kb_facet_2_lbl=f2eac3541b8ad010ea6b40cfbb4bcb20&u_kb_facet_3_lbl=03b5d2391b8e98508e9a535c2e4bcb82&u_kb_facet_5_lbl=8c7d02791b4e98508e9a535c2e4bcb68&u_kb_facet_1_lbl=c3891abd1b8e98508e9a535c2e4bcbe8
https://assets.vector.com/cms/content/know-how/_application-notes/AN-IND-1-001_CANoe_CANalyzer_as_Diagnostic_Tools.pdf
https://assets.vector.com/cms/content/know-how/_application-notes/AN-IND-1-004_Diagnostics_via_Gateway_in_CANoe.pdf
https://assets.vector.com/cms/content/know-how/_application-notes/AN-IND-1-012_CAPL_Callback_Interface.pdf

SN-IND-1-040 Diagnostics with CAPL 28

18 Contact information

For support related questions please address to the support contact for your country

https://www.vector.com/int/en/company/contacts/support-contact/.

https://www.vector.com/int/en/company/contacts/support-contact/

